Regge analysis of pion-pion (and pion-kaon) scattering for energy $s^{1 / 2}>1.4 \mathrm{GeV}$

J. R. Peláez
Departamento de Física Teórica, II (Métodos Matemáticos),
Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
and
F. J. Ynduráin
Departamento de Física Teórica, C-XI Universidad Autónoma de Madrid, Canto Blanco, E-28049, Madrid, Spain.

Abstract

We perform a detailed Regge analysis of $N N, \pi N, K N, \pi \pi$ and πK scattering. From it, we find expressions that represent the $\pi \pi$ scattering amplitudes with an accuracy of a few percent, for exchange of isospin zero, and $\sim 15 \%$ for exchange of isospin 1 , and this for energies $s^{1 / 2}>1.4 \mathrm{GeV}$ and for momentum transfers $|t|^{1 / 2} \lesssim 0.4 \mathrm{GeV}$. These Regge formulas are perfectly compatible with the low energy ($s^{1 / 2} \sim 1.4 \mathrm{GeV}$) scattering amplitudes deduced from $\pi \pi$ phase shift analyses as well as with higher energy ($s^{1 / 2} \gtrsim 1.4 \mathrm{GeV}$) experimental $\pi \pi$ cross sections. They are also compatible with $N N, K N$ and πN experimental cross sections using factorization, a property that we check with great precision. This contrasts with results from current phase shift analyses of the $\pi \pi$ scattering amplitude which bear little resemblance to reality in the region $1.4<s^{1 / 2}<2 \mathrm{GeV}$, as they are not well defined and increasingly violate a number of physical requirements when the energy grows. πK scattering is also considered, and we present a Regge analysis for these processes valid for energies $s^{1 / 2}>1.7 \mathrm{GeV}$.

As a byproduct of our analysis we present also a fit of $N N, \pi N$ and $K N$ cross sections valid from c.m. kinetic energy $E_{\text {kin }} \simeq 1 \mathrm{GeV}$ to multi TeV energies.

Typeset with $\mathrm{P}_{\mathrm{H}} \mathrm{ys}^{\mathrm{Ma}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

1. Introduction

A precise and reliable knowledge of the $\pi \pi$ scattering amplitude has become increasingly important in the last years. This is so, in particular, because $\pi \pi$ scattering is one of the few places where one has more observables than unknown constants in a chiral perturbation theory analysis, so it provides a window to higher order terms. Moreover, an accurate determination of the S wave scattering lengths, and of the phase shifts at $s^{1 / 2}=m_{K}$, provide essential information for two subjects under intensive experimental investigation at present, viz., pionic atom decays and CP violation in the kaonic system. In recent papers, Ananthanarayan, Colangelo, Gasser and Leutwyler ${ }^{[1]}$ (that we will denote by ACGL), Colangelo, Gasser and Leutwyler, ${ }^{[2]}$ Descotes et al. ${ }^{[3]}$ and Kamiński, Leśniak and Loiseau ${ }^{[3]}$ have used experimental information, analyticity and unitarity (in the form of the Roy equations) and, in ref. 2, chiral perturbation theory, to construct the $\pi \pi$ scattering amplitude at low energy, $s^{1 / 2} \leq 0.8 \mathrm{GeV}$. For these analyses one needs as input the imaginary part of the $\pi \pi$ amplitudes above the energy at which the Roy analysis stops; in particular, one needs the scattering amplitudes for $s^{1 / 2}$ above 1.4 GeV , which will be the subject of the present paper.

Unfortunately, the authors in refs. 2, 3 take their $\pi \pi$ scattering amplitude in this energy region from ACGL, ${ }^{[1]}$ which presents a number of serious drawbacks. ${ }^{1}$ First of all, the input scattering amplitude at energy $s^{1 / 2} \gtrsim 2 \mathrm{GeV}$ which these authors use (following Pennington ${ }^{[5]}$) is not physically acceptable, as it contradicts known properties of standard Regge theory and, moreover, is quite incompatible with experimental ${ }^{2} \pi \pi$ total cross sections, ${ }^{[7]}$ and this in spite of the large errors assumed by ACGL. Secondly, the scattering amplitude for $1.4 \mathrm{GeV} \leq s^{1 / 2} \leq 1.9 \mathrm{GeV}$ that ACGL (and, following them, the authors in refs. 2,3) use is obtained from phase shift analyses, specifically the Cern-Munich set of analyses, ${ }^{[8]}$ which are subject to large uncertainties and which, indeed, can be shown to contradict a number of physical requirements. [Although we will not discuss this here (see ref. 9), it is also clear that the errors ACGL, and the authors in ref. 2 , take for some of their lower energy experimental input data are excessively optimistic and, moreover, certain of their chiral parameters are likely to be biased $\left.{ }^{[10]}\right]$. One should imagine that the use of incorrect high energy input should lead to inconsistent low energy output. In fact, this occurs in the work by Colangelo, Gasser and Leutwyler, ${ }^{[2]}$ where the central values are probably displaced and the errors claimed are excessively optimistic and lead to several mismatches, as shown in refs. $9,11$.

In the present note we will not concern ourselves with the reliability or otherwise of the low energy consequences of faulty high energy input, but will concentrate our efforts in ascertaining what a correct high energy input should be. To do this, we will perform a detailed Regge analysis and show that it is compatible with experimental data for all values of $s^{1 / 2} \gtrsim 1.4 \mathrm{GeV}$ (for some $\pi \pi$ processes, even down to $s^{1 / 2} \sim 1 \mathrm{GeV}$). The resulting $\pi \pi$ amplitudes, summarized in Eqs. (4), (5), (11) and (18) and Table II below, should provide a correct and accurate input for dispersive studies of $\pi \pi$ scattering.

Our analysis will be an improvement on standard ones not only for $\pi \pi$ and πK, but even for πN, $K N$ and $N N$ in that we will be able to give an accurate description of the amplitudes for energies ranging from a kinetic enrgy in the center of mass $E_{\text {kin }} \simeq 1 \mathrm{GeV}$ to the TeV region. This accuracy reaches the level of a very few percent for zero isospin exchange, and it is less precise for the isospin 1 exchange amplitude, for which the errors may go up to $\sim 15 \%$ at low energy.

An analysis of high energy πK scattering is possible by a straightforward extension of the methods here; it is given in Sect. 3, where we present precise Regge formulas for zero isospin exchange, valid for energies $s^{1 / 2}>1.7 \mathrm{GeV}$.

The analysis of $\pi \pi, \pi K$ scattering up to (relatively) low energies, $\sim 14 \mathrm{GeV}$, is described in Sects. 2, 3; in Sect. 4 we extend it to multi TeV energies. As a byproduct of our analysis we present

[^0]also a parametrization of $N N, \pi N$ and $K N$ total cross sections compatible with the Froissart bound and valid from $E_{\text {kin }} \simeq 1 \mathrm{GeV}$ to $\sim 30 \mathrm{TeV}$. In particular, we predict the total $p p$ cross section at the LHC to be
$$
\sigma_{p p}=116 \pm 4 \mathrm{mb} .
$$

Our results are summarized in Sect. 5, where a brief discussion is also presented.

2. Regge analysis of $\pi \pi$ scattering ($s^{1 / 2} \geq 1.4 \mathrm{GeV}$)

We normalize scattering amplitudes to

$$
\sigma_{A B}=\frac{4 \pi^{2}}{\lambda^{1 / 2}\left(s, m_{A}^{2}, m_{B}^{2}\right)} \operatorname{Im} F_{A+B \rightarrow A+B}(s, 0) ; \quad \lambda(a, b, c)=a^{2}+b^{2}+c^{2}-2 a b-2 a c-2 b c .
$$

$\sigma_{A B}$ is the total $A+B$ cross section; for $N N(\bar{p} p, p p)$ and πN scattering, we understand that the cross sections are spin-averaged. According to Regge theory, the imaginary part of a scattering amplitude with fixed isospin in the t channel, $\operatorname{Im} F_{A+B \rightarrow A+B}^{\left(I_{t}\right)}(s, t)$, factorizes ${ }^{3}$ as a product: for each Regge pole, R, we can write

$$
\begin{equation*}
\operatorname{Im} F_{A+B \rightarrow A+B}^{\left(I_{t}\right)}(s, t) \underset{\substack{s \\ t \text { fixed }}}{\sim} f_{A}^{(R)}(t) f_{B}^{(R)}(t)(s / \hat{s})^{\alpha_{R}(t)} . \tag{1a}
\end{equation*}
$$

Here \hat{s} is a constant, usually taken to be $1 \mathrm{GeV}^{2}$; we will do so here. A similar formula holds for the real parts:

$$
\begin{equation*}
\operatorname{Re} F_{A+B \rightarrow A+B}^{\left(I_{t}\right)}(s, t) \underset{\substack{s \\ t \text { fixixed }}}{\sim} \operatorname{Re} \xi(R) f_{A}^{(R)}(t) f_{B}^{(R)}(t)(s / \hat{s})^{\alpha_{R}(t)} . \tag{1b}
\end{equation*}
$$

$\xi(R)$, with $\operatorname{Im} \xi(R)=1$, is known as the signature factor; for the Pomeron $(P), P^{\prime}$ and rho Regge poles one has

$$
\begin{equation*}
\operatorname{Re} \xi(R)=-\frac{1+\cos \pi \alpha_{R}}{\sin \pi \alpha_{R}}, R=P, P^{\prime} ; \quad \operatorname{Re} \xi(\rho)=\frac{1-\cos \pi \alpha_{\rho}}{\sin \pi \alpha_{\rho}} . \tag{1c}
\end{equation*}
$$

The residue functions $f_{i}^{(R)}(t)$ depend on the quantum numbers of the Regge pole exchanged, on the particles that couple to it and, if we had external currents, also on their virtuality; but the power $(s / \hat{s})^{\alpha_{R}(t)}$ is universal and depends only on the Regge pole exchanged in channel t. The exponent $\alpha_{R}(t)$ is the Regge trajectory associated to the quantum numbers in channel t. For the Pomeron, which is rather flat, we will take it linear; for the rho, a more precise quadratic formula may be used. We thus write, for small t,

$$
\begin{equation*}
\alpha_{P}(t) \underset{t \sim 0}{\simeq} \alpha_{P}(0)+\alpha_{P}^{\prime} t, \quad \alpha_{\rho}(t) \underset{t \sim 0}{\simeq} \alpha_{\rho}(0)+\alpha_{\rho}^{\prime} t+\frac{1}{2} \alpha_{\rho}^{\prime \prime} t^{2} . \tag{2}
\end{equation*}
$$

For the ρ and Pomeron pole, fits to high energy πN and $N N$ processes give

$$
\begin{align*}
\alpha_{\rho}(0) & =0.52 \pm 0.02, \quad \alpha_{\rho}^{\prime}=0.90 \mathrm{GeV}^{-2}, \quad \alpha_{\rho}^{\prime \prime}=-0.3 \mathrm{GeV}^{-4} ; \\
\alpha_{P}(0) & =1, \quad \alpha_{P}^{\prime}=0.2 \pm 0.1 \mathrm{GeV}^{-2} . \tag{3}
\end{align*}
$$

The Regge parameters taken here are based those in the global fit of Rarita et al., ${ }^{[13]}$ which are still the best available as there are few modern data for the slopes in the relevant energy range. There are a few differences, however. For $\alpha_{\rho}(0)$, we take the value 0.52 ± 0.02, instead of 0.58 . This is more consistent with determinations based on deep inelastic scattering (see e.g. the paper of Adel et al., in ref. 12). Moreover, for $\alpha_{\rho}(t)$ we use a quadratic formula that agrees with the average slope of ref. 13 for small, negative t, and which fulfills the condition $\alpha_{\rho}\left(M_{\rho}^{2}\right)=1$. Finally, for α_{P}^{\prime}, Rarita et al. give 0.11, Froggatt and Petersen ${ }^{[6]} 0.3$ and the shrinking of the diffraction peak at the Tevatron suggests 0.26 . Our choice here encompasses these three values. These are minor improvements as, in fact, for our fits in the present paper we only need the values of the $\alpha_{R}(0)$; the slopes only intervene in sum rules.

Let us now turn to the functions $f_{i}(t)$. With respect to them we have two quite separate questions. First of all, we have the question of their normalization, that is to say, the values $f_{i}(0)$. These can be obtained

[^1]with little ambiguity and small errors by fitting experimental $N N, \pi N$ and $\pi \pi$ total cross section data; we will do precisely that below. A different matter is the dependence of the $f_{i}(t)$ on t, i.e., the ratios $f_{i}(t) / f_{i}(0)$, which is important in particular for Roy equations or sum rules like the ones at the end of the present Section. These are obtained from fits to the slopes of $N N, \pi N$ differential cross sections. Unfortunately, these fits are not unique, because both the background and the functional forms assumed for the $f_{i}(t)$ have a nonnegligible influence on the results, and because for the differential cross sections also the real part of the scattering amplitudes intervene. Moreover, the parameters of these fits were obtained before QCD emerged as the theory of strong interactions; these fits were extended to large values of t where, as we now know, Regge theory must fail and one has instead the Brodsky-Farrar behaviour. ${ }^{[14]}$ They are thus forced fits.

The situation, however, is not hopeless; the difference between the numerical results of various fits is small, for small values of $|t|$. For example, the numerical difference for the ratios $f_{P}(t) / f_{P}(0)$ between refs. 9,16 is below the 10% level for $|t|^{1 / 2} \leq 0.4 \mathrm{GeV}$, which covers the values of t in which we are interested here. In the present paper we have chosen the t dependence of ref. 13, which was obtained in a detailed fit to many data.

Before writing explicit formulas for the various processes $(N N, \pi N, \pi \pi)$ we have to decide in which variable we assume Regge behaviour to hold, which is important for us since we are going down to rather low energies. In (1) we have taken the c.m. energy squared, $s=\left(p_{1}+p_{2}\right)^{2}$, with p_{i} the momenta of the incoming particles. Other possibilities are the s-u crossing symmetric variable, $\nu=2 p_{1} \cdot p_{2}$, and $E_{\text {kin }}^{2}$, so we could assume behaviours like $\nu^{\alpha_{P}}$ or $E_{\text {kin }}^{2 \alpha_{P}}$ instead of $s^{\alpha_{P}}$, etc. We have, in our fits, tried all three possibilities; the fits using s, as in (1), all have substantially better $\chi^{2} /$ d.o.f. than those using $\nu=2 p_{1} \cdot p_{2}$ or $E_{\text {kin }}^{2}$. Therefore, we stick to Regge behaviour in the variable s, as in (1).

Regge formulas for $\pi \pi, \pi N$ and $N N$ scattering. We start with $\pi \pi$ scattering. For exchange of isospin $I_{t}=0$ in the t channel, containing the Pomeron and P^{\prime} pole (the second associated with the $f_{2}(1270)$ resonance) we have

$$
\begin{align*}
\operatorname{Im} F_{\pi \pi}^{\left(I_{t}=0\right)}(s, t) & \underset{\substack{s \\
t \text { fixed }}}{\sim} P(s, t)+P^{\prime}(s, t) \\
P(s, t) & =\beta_{P} \alpha_{P}(t) \frac{1+\alpha_{P}(t)}{2} \mathrm{e}^{b t}(s / \hat{s})^{\alpha_{P}(t)} \tag{4a}\\
P^{\prime}(s, t) & =\beta_{P^{\prime}} \frac{\alpha_{P^{\prime}}(t)\left[1+\alpha_{P^{\prime}}(t)\right]}{\alpha_{P^{\prime}}(0)\left[1+\alpha_{P^{\prime}}(0)\right]} \mathrm{e}^{b t}(s / \hat{s})^{\alpha_{P^{\prime}}(t)}, \quad \alpha_{P^{\prime}}(t)=\alpha_{\rho}(t) \\
b & =(2.4 \pm 0.2) \mathrm{GeV}^{-2}
\end{align*}
$$

Here $\beta_{P}=\left[f_{\pi}^{(P)}\right]^{2}, \beta_{P^{\prime}}=\left[f_{\pi}^{\left(P^{\prime}\right)}\right]^{2}$.
The expression (4a) is like its counterpart in ref. 13, except for the P^{\prime} pole parameters. In fact, the subleading contribution of the P^{\prime} pole, that is necessary at the lowest energy range, is added somewhat empirically; its parameters are not well known, and we simply assume the corresponding trajectory to be degenerate with the one of the rho, as is suggested by a number of theoretical developments (in particular the QCD theory of Regge trajectories ${ }^{[12]}$), and as is done in ref. 6: $\alpha_{P^{\prime}}(t)=\alpha_{\rho}(t)$. In ref. 13, a larger value (0.7 instead of 0.52) was given for the intercept of the P^{\prime} pole and a smaller number was taken for its residue, but more modern determinations, as well as our fits, substantiate our choice; see Sect. 4, where we will present a global fit to data leaving, in particular, $\alpha_{P^{\prime}}(0)$ as a free parameter. The result for it, $\alpha_{P^{\prime}}(0)=0.55 \pm 0.03$, is in perfect agreement with other modern determinations and with the degeneracy assumption.

It should perhaps also be remarked that Eq. (4a), in what respects the Pomeron, is of limited validity (up to $10-15 \mathrm{GeV}$) since, at higher energies, total cross sections are known to rise. A modification of $P(s, t)$ in (4a) that will make the parametrization valid up to multi- TeV energies will be given in Sect. 4.

For $I_{t}=1$, we also take the parametrization of ref. 13. We write

$$
\begin{align*}
\operatorname{Im} F_{\pi \pi}^{\left(I_{t}=1\right)}(s, t) & \underset{\substack{s \\
t \text { fixed }}}{\sim} \rho(s, t) \\
\rho(s, t) & =\beta_{\rho}\left[(1.5+1) \mathrm{e}^{b t}-1.5\right] \frac{1+\alpha_{\rho}(t)}{1+\alpha_{\rho}(0)}(s / \hat{s})^{\alpha_{\rho}(t)} \tag{4b}
\end{align*}
$$

b is as before and $\beta_{\rho}=\left[f_{\pi}^{(\rho)}\right]^{2}$. The universal value of the slope of the diffractive factor, $\mathrm{e}^{b t}$, for all three trajectories rho, P and P^{\prime}, is what was found in ref. 13 from fit to actual $N N$ and πN data; it can nowadays

Figure 1. The average cross section $\frac{1}{3}\left[2 \sigma_{\pi^{0} \pi^{+}}+\sigma_{\pi^{0} \pi^{0}}\right]$, which is pure $I_{t}=0$. Continuous lines, for $s^{1 / 2}>1.4 \mathrm{GeV}$: Regge formula. The lines cover the errors in the values of the Regge residues. Continuous lines, up to $s^{1 / 2}=1.4 \mathrm{GeV}$: experimental cross section (from the fits in ref. 11; actually, with a slightly improved D2 wave). The dotted and dashed lines are representative of the experimental errors in the cross section.
be understood physically as a consequence of the universality of the Regge mechanism in QCD. We note that Froggatt and Petersen, ${ }^{[6]}$ who fit $\pi^{+} \pi^{-}$data, find a value for b similar to ours for the Pomeron, but somewhat different ones for rho and P^{\prime}. This last fact is not very meaningful as, in the fits to $\pi^{+} \pi^{-}$, the ρ, P^{\prime} Regge poles are subleading and easily hidden by the Pomeron. We also remark that, in ref. 11, we had added a small background to $\operatorname{Im} F_{\pi \pi}^{\left(I_{t}=1\right)}$ to join smoothly the asymptotic formulas to the experimental cross section at $s^{1 / 2} \sim 1.4 \mathrm{GeV}$. With the value of the parameter β_{ρ} found in the present Section, such background is unnecessary.

For $\pi \pi$ scattering we have to add an amplitude for exchange of isospin 2 , corresponding to double rho exchange, which we do by writing

$$
\begin{equation*}
\operatorname{Im} F_{\pi \pi}^{\left(I_{t}=2\right)}(s, t) \underset{\substack{s \\ t \text { fixed }}}{\sim} R_{2}(s, t) \equiv \beta_{2} \mathrm{e}^{b t}(s / \hat{s})^{\alpha_{\rho}(t)+\alpha_{\rho}(0)-1} \tag{5}
\end{equation*}
$$

We will discuss this quantity $R_{2}(s, t)$ later on; in particular, we will determine the quantity β_{2}, which is small. We will start by putting $\beta_{2}=0$ and correct for this afterwards.

The important parameters are $\beta_{P}, \beta_{P^{\prime}}, \beta_{\rho}$. We can obtain them fitting $N N$ ($p p$ and $\bar{p} p$) and πN cross sections (including the forward differential cross section for the charge exchange reaction $\pi^{-} p \rightarrow \pi^{0} n$), from $\pi \pi$ cross sections or from a global fit to the two sets. We write

$$
\begin{gather*}
\frac{\sigma_{p p}+\sigma_{\bar{p} p}}{2} \underset{s \text { large }}{\simeq} \frac{4 \pi^{2}}{\lambda^{1 / 2}\left(s, m_{p}^{2}, m_{p}^{2}\right)} \frac{1}{2} f_{N / \pi}^{2}\left[P(s, 0)+P^{\prime}(s, 0)\right], \\
\sigma_{\pi^{ \pm} p} \underset{s \text { large }}{\simeq} \frac{4 \pi^{2}}{\lambda^{1 / 2}\left(s, m_{\pi}^{2}, m_{p}^{2}\right)} f_{N / \pi}\left\{\frac{1}{\sqrt{6}}\left[P(s, 0)+P^{\prime}(s, 0)\right] \mp \frac{1}{2} \bar{\rho}(s, 0)\right\}, \tag{6a}\\
\left.\frac{\mathrm{d} \sigma\left(\pi^{-} p \rightarrow \pi^{0} n\right)}{\mathrm{d} t}\right|_{t=0} \underset{s \text { large }}{\simeq} f_{N / \pi}^{2} \frac{1-\cos \pi \alpha_{\rho}}{\sin ^{2} \pi \alpha_{\rho}} \frac{\pi^{3}}{\lambda\left(s, m_{\pi}^{2}, m_{p}^{2}\right)}|\bar{\rho}(s, 0)|^{2} .
\end{gather*}
$$

Here $f_{N / \pi} \equiv f_{N}^{(P)} / f_{\pi}^{(P)}$, and we have defined

$$
\begin{equation*}
\bar{\rho}(s, t)=\beta_{\rho}^{(N \pi)}\left[(1.5+1) \mathrm{e}^{b t}-1.5\right] \frac{1+\alpha_{\rho}(t)}{1+\alpha_{\rho}(0)}(s / \hat{s})^{\alpha_{\rho}(t)} \tag{6b}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta_{\rho}^{(N \pi)}=\left[f_{\pi}^{(P)} f_{N}^{(\rho)} / f_{\pi}^{(\rho)} f_{N}^{(P)}\right] \beta_{\rho} \tag{6c}
\end{equation*}
$$

In Eq. (6a) we have put the same values of $f_{N / \pi}$ for Pomeron and P^{\prime}. In Sect. 4 we will discuss fits allowing for different $f_{N / \pi}^{(P)}, f_{N / \pi}^{\left(P^{\prime}\right)}$; their central values will be somewhat different, but the improvement in the $\chi^{2} /$ d.o.f. obtained by so doing is not significative.
Fits. We will not fit data for scattering off neutrons which would not improve the precision while, because the neutrons are necessarily bound, they could distort the fits. We will also not include the difference of
cross sections $\sigma_{\bar{p} p}-\sigma_{p p}$ in the fits, as this would involve the contribution of at least three Regge poles (ω, ϕ and π) which do not contribute to $\pi \pi$. One could include the reaction $\bar{p} p \rightarrow \bar{n} n$, which only involves exchange of the rho, but the data for it are few and with (comparatively) large errors, so it would add little to the analysis. For the charge-exchange reaction, $\pi^{-} p \rightarrow \pi^{0} n$, only data in the forward direction are included. This reaction is interesting in that, although it has much larger errors than the others, it receives contribution from the real part of the corresponding Regge pole, so it represents a completely independent test of the Regge formulas.

Before going on to the actual fits, a few words have to be said on the energy regions in which one may expect Regge behaviour (and, in particular, factorization) to hold. Generally speaking, we expect this to occur when one is past the region of elastic resonances and one also has $E_{\text {kin }}^{2} \gg \Lambda^{2}(\Lambda \simeq 0.4 \mathrm{GeV}$ is the QCD parameter), which means for $E_{\text {kin }} \gtrsim 1 \mathrm{GeV}$; but the precise details vary for different reactions. Thus, for $p p, \bar{p} p$ scattering there are no resonances and hence Regge behaviour is expected to occur precociously: here we will actually fit from $E_{\text {kin }}=0.98 \mathrm{GeV}$.

For $\pi \pi$ scattering it is difficult to tell when exactly one may use Regge formulas since data, particularly for $\pi^{-} \pi^{-}$, are not very good. For the cross section $\sigma^{\left(I_{t}=0\right)} \equiv \frac{1}{3}\left[2 \sigma_{\pi^{0} \pi^{+}}+\sigma_{\pi^{0} \pi^{0}}\right]$, Eq. (4) provides a good representation for energies as low as $E_{\text {kin }}=1 \mathrm{GeV}$, as shown in Fig. 1; but, when resonances are more important, Regge behaviour is a good approximation only at slightly higher energies. Another matter is that, at low energies $\left(s^{1 / 2} \sim 1.5 \mathrm{GeV}\right)$ the $\pi \pi$ data are of poor quality. Because of this, we will consider two extreme possibilities for actual fits. The first, that we will call no-cut, consists in including all $\pi \pi$ data for $E_{\text {kin }}>1.1 \mathrm{GeV}\left(s^{1 / 2} \geq 1.38 \mathrm{GeV}\right)$. The second possibility, that we call cut, consists in cutting out all data for energies below $s^{1 / 2}=2 \mathrm{GeV}$. The difference in results between the two fits will be an indication of the systematic errors in our calculation.

Figure 2. The total cross sections $\sigma_{\pi \pm p}, \frac{1}{2}\left(\sigma_{\bar{p} p}+\sigma_{p p}\right)$ and $\frac{1}{2}\left(\sigma_{K^{+} p}+\sigma_{K^{-} p}\right)$. Black dots, triangles and squares: experimental points. Continuous lines: Regge formulas, with parameters as in our best fit. For $\frac{1}{2}\left(\sigma_{\bar{p} p}+\sigma_{p p}\right)$ and $\frac{1}{2}\left(\sigma_{K^{+} p}+\sigma_{K^{-} p}\right)$, the three lines cover the errors in the values of the Regge residues. For πN the theoretical error is of the order of that for $\frac{1}{2}\left(\sigma_{\bar{p} p}+\sigma_{p p}\right)$. Note that the thick line in the low energy experimental cross sections for πN is merely due to the accumulation of closely spaced data.

For πN the formulas (6) fit well data down to $E_{\text {kin }} \sim 1.3 \mathrm{GeV}$, but, for the sum, $\sigma_{\pi^{+} p}+\sigma_{\pi^{-} p}$, one can go to $E_{\text {kin }} \sim 1 \mathrm{GeV}$. For the difference, $\sigma_{\pi^{+} p}-\sigma_{\pi^{-} p}$ and for the charge-exchange reaction $\pi^{-} p \rightarrow \pi^{0} n$, resonances somewhat spoil local agreement, but Eq. (6) provides a good average representation even down to 1 GeV , as has been known for a long time (see, e.g., ref. 15) and as can be seen in the lower energy region in our fit to $\pi^{+} p$ data in Fig. 2. We will here start from $E_{\text {kin }}=1.08 \mathrm{GeV}$.

Another question is how high one goes in energy. In the present Section we fit experimental data for c.m. kinetic energies $E_{\text {kin }} \lesssim 16.5 \mathrm{GeV}$: this is what is required for applications to $\pi \pi$ Roy equations, dispersion relations and sum rules, since here the importance of the very high energy region is negligible. Nevertheless, and as stated before, parametrizations and fits valid up to multi TeV energies will be given in Sect. 4.

The data on $\pi^{-} p \rightarrow \pi^{0} n$ are from the compilation in ref. 15 . For $N N$ and πN we will take the data from the COMPAS Group compilations, as given in the Particle Data Tables. ${ }^{[16]}$ For those data where systematic errors are not given, we have included a common systematic error of 0.5% for $p p, 1 \%$ for $\bar{p} p$ and 1.5% for πp, which are like the standard systematic errors in other data. Another possibility is to take a common systematic error of 1.5% for all data: the difference of the results with the two will indicate the systematic errors of our fit. We have also made a selection of $N N, \pi N$ data, as follows. We take only data at energies at which there are results for both $p p$ and $\bar{p} p$ or $\pi^{+} p$ and $\pi^{-} p$; and, when there are, at a given energy, data from various experiments, we have taken only the most recent. This is designed to thin out the data to a number comparable in order of magnitude to that of $\pi \pi$, so that $\pi \pi$ data have a nonnegligible weight in the joint fits. For $\pi \pi$ scattering we have taken the errors as given by the various experimental groups except for those of Abramowicz et al., ${ }^{[7]}$ who only give statistical errors, much smaller than those of the other groups, and for which we have added a common systematic error of 1.5 mb to all points; even with this, the error, though comparable, is smaller than what other groups find.

We could fit separately the $N N, \pi N$ data and the $\pi \pi$ data of ref. 7 , or make a global fit. The results of these fits, in which we have put $\beta_{2}=0$, and fixed $\alpha_{\rho}(0)=0.52$, are given in Table I, where the errors correspond to one standard deviation. The best values are average values, with errors enlarged to overlap other results. A graphical representation of this best fit may be seen, compared with experimental $N N, \pi N$ cross sections in Fig. 2, and for $\pi \pi$ data, in Fig. 3. We note that, in Fig. 3 for $\pi \pi$, we have used the values of β_{ρ} and β_{2} from Eq. (11) below.

	$N N, \pi N\left[\right.$ enlarged error $\left.{ }^{(\mathrm{a})}\right]$	Only $\pi \pi\left[\mathrm{cut}^{(\mathrm{b})}{ }^{(\mathrm{c})}\right]$	$N N, \pi N, \pi \pi\left[\mathrm{cut}^{(\mathrm{b})}\right]$	Best values
$f_{N / \pi}$	$1.405 \pm 0.005[1.411 \pm 0.004]$		$1.404 \pm 0.005[1.407 \pm 0.005]$	1.406 ± 0.007
$\beta_{\rho}^{(N \pi)}$	$0.366 \pm 0.009[0.367 \pm 0.010]$		$0.366 \pm 0.010[0.367 \pm 0.009]$	0.366 ± 0.010
β_{ρ}		$1.30 \pm 0.13[0.59 \pm 0.27]$	$1.32 \pm 0.13[0.59 \pm 0.25]$	$1.0 \pm 0.3^{(*)}$
β_{P}	$2.55 \pm 0.01[2.53 \pm 0.01]$	$2.50 \pm 0.08[2.55, \mathrm{fix}]$	$2.56 \pm 0.01[2.56 \pm 0.01]$	2.56 ± 0.03
$\beta_{P^{\prime}}$	$1.04 \pm 0.02[1.09 \pm 0.02]$	$1.46 \pm 0.17[1.04, \mathrm{fix}]$	$1.04 \pm 0.02[1.04 \pm 0.02]$	1.05 ± 0.05
$\frac{\chi^{2}}{\text { d.o.f. }}$	$\frac{303}{229-4}\left[\frac{252}{229-4}\right]$	$\frac{109}{58-3}\left[\frac{45}{39-1}\right]$	$\frac{415}{288-5}\left[\frac{348}{268-5}\right]$	

${ }^{(a)}$ We here endow all πN numbers with a minimum systematic error of 1.5%. ${ }^{(b)}$ By "cut" we mean that $\pi \pi$ data for $s^{1 / 2}<2 \mathrm{GeV}$ are removed from the fit. ${ }^{\text {(c) }}$ We here fix $\beta_{P}, \beta_{P^{\prime}}$ as given by $N N, \pi N$ to avoid spureous minima. ${ }^{(*)}$ The error in this quantity will be improved using crossing sum rules; see Eq. (11) below.

Table I

A few features of our results worth noting are the following. Firstly, the equality of $f_{N / \pi}$ and β_{P}, $\beta_{P^{\prime}}$, for fits with and without $\pi \pi$ data is a very satisfactory test of factorization. Another interesting point is the stability and accuracy of the parameters $f_{N / \pi}, \beta_{\rho}^{(N \pi)}, \beta_{P}$. The parameter $\beta_{P^{\prime}}$ is less well determined, and β_{ρ} is not fixed with precision by fits to data alone; we will improve its accuracy in a moment using sum rules. Secondly, the matching between the low energy ($s^{1 / 2} \leq 1.42 \mathrm{GeV}$) results for cross sections from phase shift analyses, and the high energy $\left(s^{1 / 2} \geq 1.42 \mathrm{GeV}\right)$ Regge representations is excellent for $\pi^{0} \pi^{-}$, $\pi^{-} \pi^{-}$and $\sigma^{\left(I_{t}=0\right)}$. It is less good for $\pi^{+} \pi^{-}$, where matching occurs only at the 1.5σ level, no doubt due to the coinciding tails of the $f_{2}(1270)$ and $f_{0}(1370)$ resonances. And, thirdly, the fact that, for $N N$ and πN the $\chi^{2} /$ d.o.f. is somewhat larger than unity is due to the following effects. First, we use only two poles for vacuum exchange, and one for charge exchange: we are thus missing the contributions of other poles, likely small, but not negligible at the lower energy range. Secondly, at the very low energy range, the experimental cross sections oscillate a little around the Regge formulas. Finally, and probably the most important effect, we have that, to cover well the upper part of the energy range, we need more sophisticated expressions: see Sect. 4.

Besides this, we have a few technical points to make in connection with the fits including $\pi \pi$ data. As is clear from Fig. 3, the low energy $\left(s^{1 / 2}<2.5 \mathrm{GeV}\right)$ results for $\pi^{-} \pi^{-}$cross sections of various experiments are quite incompatible with one another, which is the reason for the large $\chi^{2} /$ d.o.f. in no-cut fits. There is certainly a bias in the experimental $\pi^{-} \pi^{-}$cross sections of Biswas et al., and Robertson, Walker and Davis, ${ }^{[7]}$ in the lower energy range. This is probably due to incorrect treatment of final state interactions, that, at these lower energies, are influenced by the Δ_{33} and other resonances. At higher energies the influence of this resonance seems to become negligible as, indeed, the $\pi^{-} \pi^{-}$cross sections found by Robertson, Walker and Davis overlap those of Abramowicz et al. ${ }^{[7]}$ and both tend to the $\pi^{+} \pi^{-}$one, as Regge theory and the Pomeranchuk theorem imply. We consider that this problem is solved by considering our two types of fits, cut or no-cut, for $\pi \pi$ scattering.

We next discuss the isospin 2 exchange piece, $R_{2}(s, t)$. We have three methods to get the quantity β_{2}. First, we fix the values of β_{P} and $\beta_{P^{\prime}}$ to their best values, as given in Table I, and fit the $\pi \pi$ data using Eqs. (4), (5). Note that one cannot leave the parameters $\beta_{P}, \beta_{P^{\prime}}$ free in these fits because one would get spureous minima, since the data are not precise enough. We find $\beta_{\rho}=1.07$ and a very small $\beta_{2} \sim-2 \times 10^{-8}$. Alternatively, we could obtain β_{2} by fitting $\sigma_{\pi^{0} \pi^{0}}-\sigma_{\pi^{0} \pi^{+}}$at $s^{1 / 2}=1.42 \mathrm{GeV}$, as was done in ref. 11. This gives $\beta_{2}=0.55 \pm 0.2$. Finally, we can use the first crossing sum rule in the Appendix to ref. 11 (identical to (B.7) in ACGL), which would give a β_{2} compatible with zero. We take as a compromise the number

$$
\begin{equation*}
\beta_{2}=0.2 \pm 0.2 \tag{7}
\end{equation*}
$$

However, we should note that the t dependence of $R_{2}(s, t)$ is little more than guesswork.
Sum rules. We now say a few words on the sum rules discussed in ref. 11. Because these sum rules were verified with Regge expressions slightly different from what we have now found, one may wonder what happens to them. Since the formulas in (4), (5), with parameters as in Table I, agree with those of ref. 11 within $\lesssim 2 \sigma$, and the decrease of β_{P} is (partially) compensated by the increase in $\beta_{P^{\prime}}$, it can be expected that the various sum rules would still be satisfied within errors, as indeed it happens. Our numbers here leave the agreement of the Olsson sum rule and the value of the P wave scattering length and effective range still within 1σ. We have already discussed the first crossing sum rule in the Appendix in ref. 11 in connection with β_{2}, so we turn to the second crossing sum rule. It reads,

$$
\begin{equation*}
\int_{4 m_{\pi}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} F^{\left(I_{t}=1\right)}\left(s, 4 m_{\pi}^{2}\right)-\operatorname{Im} F^{\left(I_{t}=1\right)}(s, 0)}{s^{2}}=\int_{4 m_{\pi}^{2}}^{\infty} \mathrm{d} s \frac{8 m_{\pi}^{2}\left[s-2 m_{\pi}^{2}\right]}{s^{2}\left(s-4 m_{\pi}^{2}\right)^{2}} \operatorname{Im} F^{\left(I_{s}=1\right)}(s, 0) \tag{8}
\end{equation*}
$$

The interest of this sum rule lies in that its high energy $\left(s^{1 / 2} \geq 1.42 \mathrm{GeV}\right)$ is dominated by $\rho(s, t)$, while the low energy piece $\left(s^{1 / 2} \leq 1.42 \mathrm{GeV}\right)$ is such that the contributions of the S waves cancel, so it is dominated by the P wave, which is very well known. Thus, it provides an independent, reliable way of fixing the parameter β_{ρ}. We find (8) satisfied provided one has

$$
\begin{equation*}
\beta_{\rho}=0.82 \pm 0.12 \tag{9}
\end{equation*}
$$

Figure 3. Total cross sections $\sigma_{\pi^{0} \pi^{-}}, \sigma_{\pi^{-} \pi^{-}}$and $\sigma_{\pi^{+} \pi^{-}}$. Black dots, triangles and squares: experimental points from ref. 7. The stars at 1.38 and 1.42 GeV (PY) are from the phase shift analysis of experimental data given in ref. 11, slightly improved for the D2 wave. Continuous lines, from 1.42 GeV (PY): Regge formula, with parameters as in our best fit (the three lines per fit cover the error in the theoretical values of the Regge residues). Dashed lines, above 2 GeV : the cross sections following from ACGL; ${ }^{[1]}$ the grey band covers their error band. Below 2 GeV , the dotted line corresponds to the $\pi^{+} \pi^{-}$cross section from the Cern-Munich analysis; cf. Fig. 7 in the paper of Hyams et al. ${ }^{[8]}$

Since this is compatible with the independent determinations in Table I, we may include fulfillment of (8) in the fits. If we do so for the fit with cut $\pi \pi$ data, we get the value

$$
\begin{equation*}
\beta_{\rho}=0.78 \pm 0.11 \tag{10a}
\end{equation*}
$$

If we include (8) in the fit with all $\pi \pi$ data (no-cut) we find instead

$$
\begin{equation*}
\beta_{\rho}=1.07 \pm 0.09 \tag{10b}
\end{equation*}
$$

Combining (10a,b) we can then take

$$
\begin{equation*}
\beta_{\rho}=0.94 \pm 0.10 \text { (Stat.) } \pm 0.10 \text { (Syst.). } \tag{10c}
\end{equation*}
$$

Best values. We can now present our best values, and compare them with the values given in ref. 11 (PY), obtained basically from those by Rarita et al., ${ }^{[13]}$ or those of refs. 1,5 (ACGL):

	[Our best values]	$[\mathrm{PY}]$	$[\mathrm{ACGL}]$.
β_{ρ}	0.94 ± 0.14	0.84 ± 0.10	1.48 ± 0.25
β_{P}	2.56 ± 0.03	3.0 ± 0.3	1.0 ± 0.6
$\beta_{P^{\prime}}$	1.05 ± 0.05	0.72 ± 0.07	2.22 ± 0.38
β_{2}	0.2 ± 0.2	0.55 ± 0.20	0

Besides these, we have also

$$
\begin{equation*}
f_{N / \pi}=1.408 \pm 0.005, \quad \beta_{\rho}^{(N \pi)}=0.366 \pm 0.010 \tag{11b}
\end{equation*}
$$

Our present results are compatible with those in refs. $6,11,13$. We note, however, that our fits include much more information on the total cross sections than those in refs. 6,13 . The first only includes $\pi^{+} \pi^{-}$data while the more complete fit of Rarita et al. ${ }^{[13]}$ includes 24 total cross section data for $N N$ (we have 34) and 28 for πN (we have 87); the energy range we cover is also wider, by a factor 6 in the variable s. We also have $58 \pi \pi$ data points (none in ref. 13). Of course, the situation is different for the t dependence of the residue functions $f_{i}(t)$ for which the fit of Rarita et al. ${ }^{[13]}$ cannot be really improved.

The results in (11) may be compared with some theoretical models. The value $f_{N / \pi} \simeq 1.4$ is similar to what one gets in the naive quark model ${ }^{[17]}$ with additive quark-quark cross sections, that gives $f_{N / \pi}=3 / 2$. [It is, however, not clear why the naive quark model works, as its mechanism is very different from the orthodox QCD one]. Likewise, the value of $\beta_{\rho}=0.94 \pm 0.14$ is similar to what one has in the Veneziano model ${ }^{[18]}\left(\beta_{\rho} \simeq 0.95\right)$, but the relation $\beta_{P^{\prime}}=\frac{3}{2} \beta_{\rho}$ that this model gives is not well satisfied. β_{ρ} also agrees with the rho dominance model, in which one couples the rho universally to pions and nucleons according to

$$
g \bar{N} \vec{t}^{\mu} N \vec{\rho}_{\mu}, \quad g\left(\vec{\pi} \times \overleftrightarrow{\partial}_{\mu} \vec{\pi}\right) \vec{\rho}^{\mu}
$$

with $\vec{t}=\vec{\sigma} / 2, \vec{\sigma}$ the Pauli matrices, that gives $\beta_{\rho}=\sqrt{\frac{8}{3}} f_{N / \pi} \beta_{\rho}^{(N \pi)} \simeq 0.84$.

3. πK scattering

The analysis of πK scattering follows similar lines. For exchange of isospin zero we have

$$
\begin{gather*}
\operatorname{Im} F_{\pi K}^{\left(I_{t}=0\right)}(s, t) \underset{\substack{s \\
t \text { fixed }}}{\sim} f_{K / \pi}\left[P(s, t)+r P^{\prime}(s, t)\right] ; \tag{12a}\\
f_{K / \pi}=f_{K}^{(P)}(0) / f_{\pi}^{(P)}(0)
\end{gather*}
$$

P, P^{\prime} are as above, and r is related to the branching ratio for the $\bar{K} K$ decay of the resonance ${ }^{4} f_{2}(1270)$, $r \sim \mathrm{BR}=(4.6 \pm 0.5) \times 10^{-2}$. For isospin 1 exchange,

$$
\begin{array}{r}
\operatorname{Im} F_{\pi K}^{\left(I_{t}=1\right)}(s, t) \underset{\substack{s \\
t \text { fixed }}}{\sim} g_{K / \pi} \rho(s, t), \tag{12b}\\
g_{K / \pi}=f_{K}^{(\rho)}(0) / f_{\pi}^{(\rho)}(0)
\end{array}
$$

$\rho(s, t)$ is as before. To find the desired representations for the πK amplitude we have to determine the ratios $f_{K / \pi}, g_{K / \pi}$. For the first, this is done taking the $f_{N / \pi}$ from $N N, \pi N$ scattering, as in the previous sections, and with the help of the even combination of cross sections for $K N$ scattering:

$$
\begin{equation*}
\sigma_{K^{+} p}+\sigma_{K^{-} p} \underset{s \text { large }}{\simeq} \frac{4 \pi^{2}}{\lambda^{1 / 2}\left(s, m_{K}^{2}, m_{p}^{2}\right)} f_{N / \pi} f_{K / \pi}\left[P(s, 0)+r P^{\prime}(s, 0)\right] \tag{13}
\end{equation*}
$$

For $g_{K / \pi}$, unfortunately, we cannot use the charge exchange reaction $K^{-} p \rightarrow K^{0} n$ because there are two trajectories of comparable importance, ρ and that corresponding to $a_{2}(1320)$ exchange, that contribute; for a discussion, cf. for instance the text of Barger and Cline, ref. 12. The difference of cross sections $K^{+} p$ and $K^{-} p$ also contains extra contributions (ω, ϕ, \ldots).

For the $K N$ cross sections we will take data in the region $E_{\text {kin }}>1 \mathrm{GeV}$, and go up to $E_{\text {kin }}=10 \mathrm{GeV}$. At higher energies the logarithmic increase of the total cross section for $K^{+} p$ scattering is noticeable, and we would need more complicated Regge formulas (that we will give in Sect. 4); while, as occurs for the $\pi \pi$ case, the importance of the very high energy region is negligible in most applications to πK scattering. For πK scattering we thus expect the ensuing Regge expressions to be accurately valid for a corresponding energy range, say, for $1.7 \mathrm{GeV}<s^{1 / 2}<11 \mathrm{GeV}$.

The $K^{ \pm} p$ data we take also from the COMPAS Group compilations; see the Particle Data Tables. ${ }^{[16]}$ For those data where systematic errors are not given, we have included a common systematic error of 0.3 mb , as we did for the πN case. We take only data at energies at which there are results for both $K^{+} p$ and $K^{-} p$. In the fits we use the very precise values of the parameters $f_{N / \pi}, \beta_{P}$ obtained before, and we set $r=0$, since it is very small and not very well known. In fact, in Sect. 4 we will make fits leaving r free; its value will turn out to satisfy $|r| \lesssim 0.1$. We find

$$
\begin{align*}
& f_{K / \pi}=0.67 \pm 0.01 \quad\left[\text { from } K^{+} p+K^{-} p ; \chi^{2} / \text { d.o.f. }=50 /(43-1)\right] \\
& g_{K / \pi}=1.1 \pm 0.1 \tag{14}
\end{align*}
$$

The results for $\left(\sigma_{K^{+} p}+\sigma_{K^{-} p}\right) / 2$ are shown in Fig.2. The value of $g_{K / \pi}$ is taken from the classical analysis of ref. 19, that takes into account the $a_{2}(1320)$ exchange. The value of $f_{K / \pi}$ is within 20% of its $\mathrm{SU}(3)$ value, $\sqrt{\frac{2}{3}} \simeq 0.82$.

4. A global fit valid up to multi TeV energies

A simple parametrization of scattering amplitudes which fits data at energies $s^{1 / 2}>12 \mathrm{GeV}$ (with a $\chi^{2} /$ d.o.f. $=1.2$ to 1.8 , depending on the process) may be found in in refs. 20, 21. Here the Pomeron is allowed an intercept larger than unity, $\alpha_{P}(0) \sim 1.095$, and the intercept of the P^{\prime} is given as $\alpha_{P^{\prime}}(0)=0.66$. This parametrization, that we will call "power Pomeron" parametrization, is purely phenomenological, as explicitly mentioned in refs. 20, 21. Only data with energy larger than $\sim 10 \mathrm{GeV}$ are used in the fits which, if extended to energies below 5 GeV , miss widely the data. These parametrizations also must fail at very large energies since they are incompatible with unitarity in that they violate the Froissart bound.

[^2]
-REGGE ANALYSIS OF PION-PION (AND PION KAON) SCATTERING -

As a matter of fact, in ref. 22 it is remarked the inadequacy of such parametrization, and a parametrization verifying the Froissart bound (i.e., with a term in (Const.) $\times \log ^{2} s / s_{0}+$ Const.) is substituted in place of the "power Pomeron." This improves substantially the $\chi^{2} /$ d.o.f. of the fit, and gives an intercept $\alpha_{P^{\prime}}(0)=0.54 \pm 0.02$, perfectly compatible with our choice 0.52 ± 0.02. The corresponding parametrization holds down to $s^{1 / 2}=5 \mathrm{GeV}$.

It is possible to write a parametrization, similar to that of ref. 22 , obtained by a modification of the Pomeron in Eq. (4a), that fits data for kinetic energies from 1 GeV to the multi- TeV region and which, moreover, is compatible with unitarity by adding a slightly more complicated logarithmic term. We do this as follows: we note that it is possible to improve the Froissart bound to a bound of the form ${ }^{[23]}$

$$
\begin{equation*}
\sigma_{\mathrm{tot}} \leq a \log ^{2} \frac{s}{s_{1} \log ^{7 / 2} s / s_{2}} \tag{15}
\end{equation*}
$$

which is maximal in the sense that one cannot increase the power of the \log in the denominator to more than $7 / 2$. For the bound for $\pi \pi$ scattering, one can evaluate the constants a, s_{1}, s_{2} in terms of the pion mass and low energy parameters for the D wave, with $a=\pi / 4 m_{\pi}^{2} \simeq 15 \mathrm{mb}^{2}, s_{1}=m_{\pi}^{2}$ if we assume the cross section to be mostly inelastic. What this suggests is that we add a term like (15) to the Pomeron given in (4a), but leaving a, s_{1}, s_{2} as free parameters. Thus we replace,

$$
\begin{align*}
P(s, t) & =\beta_{P} \alpha_{P}(t) \frac{1+\alpha_{P}(t)}{2} \mathrm{e}^{b t}(s / \hat{s})^{\alpha_{P}(t)} \rightarrow P_{F}(s, t) \\
P_{F}(s, t) & =\left\{\widetilde{\beta}_{P}+A \log ^{2} \frac{s}{s_{1} \log ^{7 / 2} s / s_{2}}\right\} \alpha_{P}(t) \frac{1+\alpha_{P}(t)}{2} \mathrm{e}^{b t}(s / \hat{s})^{\alpha_{P}(t)} \tag{16}
\end{align*}
$$

This replacement should also be made in Eqs. (6), (12) and (13). The logarithmic term has an appealing physical interpretation as the contribution of the Regge cuts which, as Mandelstam showed long ago, ${ }^{[24]}$ should accompany the Pomeron. The parameter β_{P} that we used before is to be viewed as an effective parameter, the sum of $\widetilde{\beta}_{P}$ and the average value, for low energy $\left(s^{1 / 2} \lesssim 15 \mathrm{GeV}\right)$, of the logarithmic piece in (16).

With (16) we fit data for $\pi^{ \pm} p, K^{+} p+K^{-} p, \pi \pi$ and $p p+\bar{p} p$ cross sections ${ }^{5}$ up to the highest energies attained experimentally, 30 TeV in cosmic ray experiments. ${ }^{[25]}$

Because we have so many experimental data, covering such a wide energy range, we may fit all hadronic data (i.e., including $N N, \pi N, K N$ and $\pi \pi$ data) leaving all parameters free; in particular, this will test the quality of the assumption of degenerate rho and f_{2} trajectories, the equality of $f_{N / \pi}^{(P)}, f_{N / \pi}^{\left(P^{\prime}\right)}$, and the smallness of the parameter r in Eq. (13). We only fix $\alpha_{\rho}(0)$ to the number given by deep inelastic scattering, 0.52 ± 0.02, include the sum rule (8), and find

$$
\begin{align*}
f_{N / \pi}^{(P)} & =1.350 \pm 0.008 ; \quad f_{N / \pi}^{\left(P^{\prime}\right)}=1.67 \pm 0.07 ; \quad f_{K / \pi}=0.74 \pm 0.01 ; \quad \alpha_{P^{\prime}}(0)=0.61 \pm 0.04 \\
\widetilde{\beta}_{P} & =2.33 \pm 0.09 ; \quad \beta_{P^{\prime}}=1.05 \pm 0.10 ; \quad \beta_{\rho}^{(N \pi)}=0.385 \pm 0.009 ; \quad \beta_{\rho}=0.94 \pm 0.14 ; \quad r=0.11 \pm 0.08 \\
A & =0.022 \pm 0.002 ; \quad s_{1}=(1.2 \pm 0.7) \times 10^{-4} \mathrm{GeV}^{2} ; \quad s_{2}=\left(0.33_{-0.3}^{+0.6}\right) \times 10^{-7} \mathrm{GeV}^{2} \\
& \chi^{2} /(\text { d.o.f. })=339 /(358-12) \simeq 0.98 \tag{17}
\end{align*}
$$

The value of β_{ρ} given here is that found before, Eq. (10c); since there are no $\pi \pi$ data at very high energy, the value of this quantity essentially decouples from the very high energy analysis. ${ }^{6}$

What is interesting of (17) is that the value of $\alpha_{P^{\prime}}(0)$ is compatible with what one finds from degeneracy, $\alpha_{P^{\prime}}(0)=\alpha_{\rho}(0)=0.52 \pm 0.02$, and that $f_{N / \pi}^{(P)}$ and $f_{N / \pi}^{\left(P^{\prime}\right)}$ are not far from each other, as required by

[^3]

Figure 4. The total cross sections $\sigma_{\pi^{ \pm} p}, \frac{1}{2}\left(\sigma_{K^{+}{ }_{p}}+\sigma_{K^{-} p}\right)$ and $\frac{1}{2}\left(\sigma_{\bar{p} p}+\sigma_{p p}\right)$ up to $30-60 \mathrm{GeV}$ (upper graph) and $\frac{1}{2}\left(\sigma_{\bar{p} p}+\sigma_{p p}\right)$ up to 30 TeV (lower graph). Black dots, triangles and squares: experimental points. For energies above 30 GeV , we have given the experimental values of $\frac{1}{2}\left(\sigma_{\bar{p} p}+\right.$ $\sigma_{p p}$) as if they equaled $\sigma_{\bar{p} p}$ or $\sigma_{p p}$. Continuous lines: Regge formulas, with parameters as in (18). In the lower figure we have given the error bands for $\frac{1}{2}\left(\sigma_{\bar{p} p}+\sigma_{p p}\right)$ that follow from (18).
(strong) factorization. In fact, this had alredy been noticed in ref. 22: in a fit with a formula compatible with theory (the Froissart bound), the resuts respect other theoretical constraints automatically. The problem with the fit in (17) is that there is, unfortunately, a very strong correlation among $\widetilde{\beta}_{P}, \beta_{P^{\prime}}, \alpha_{P^{\prime}}(0), s_{1}$ and s_{2} and, if we leave all of them free as we did in getting (17), there exist a large number of equally significant minima: the parameters are not well determined. In fact, $s_{1}, s_{2}, \beta_{P^{\prime}}$ and $\alpha_{P^{\prime}}(0)$ can one mock the effects of each other. In particular, a set of fits with quality essentially unchanged may be obtained by varying simultaneously s_{1} and s_{2}. In view of this, we require $f_{N / \pi}^{(P)}=f_{N / \pi}^{\left(P^{\prime}\right)}$ and, to fix the parameters, choose $s_{1}=0.01 \mathrm{GeV}^{2}$ and repeat the fit with all other parameters free. We find what we consider our best result:

$$
\begin{align*}
f_{N / \pi} & =1.380 \pm 0.004 \quad f_{K / \pi}=0.717 \pm 0.005 ; \quad \alpha_{P^{\prime}}(0)=0.55 \pm 0.03 ; \quad r=0 \pm 0.013 \\
\widetilde{\beta}_{P} & =2.31 \pm 0.05 ; \quad \beta_{P^{\prime}}=1.39 \pm 0.14 ; \quad \beta_{\rho}^{(N \pi)}=0.377 \pm 0.009 ; \quad \beta_{\rho}=0.94 \pm 0.14 \tag{18}\\
A & =0.033 \pm 0.001 ; \quad s_{1}=0.001 \mathrm{GeV}^{2}[\mathrm{fix} .] ; \quad s_{2}=0.13 \pm 0.05 \mathrm{GeV}^{2} ; \\
& \chi^{2} /(\text { d.o.f. })=372 /(358-10) \simeq 1.066 .
\end{align*}
$$

We note that, although the χ^{2} /d.o.f. is slightly worse than that in (17), we consider the fit in (18) to be more satisfactory physically. The values of the parameters s_{1}, s_{2} in (17) were too small for comfort, and one should not force too good a fit at the expense of physical considerations (like factorization or degeneracy), particularly since we are fitting with formulas that, at the lowest energies, should be corrected by including other Regge poles (or cuts). Eq. (18) has the nice properties that degeneracy is verified, up to errors, that $f_{K / \pi}$ agrees better with its $\mathrm{SU}(3)$ value, and the value of $\beta_{P^{\prime}}$ agrees, also within errors, with the prediction of the Veneziano model, $\beta_{P^{\prime}}=\frac{3}{2} \beta_{\rho}=1.4 \pm 0.3$.

At the lower energies (below 15 GeV) (16) plus (17) or (18) overlap with the previous fits, using (4a) for the Pomeron and P^{\prime}, for vacuum exchange. In fact, for $K p$ or πN, the corresponding curves could
-REGGE ANALYSIS OF PION-PION (AND PION KAON) SCATTERING -
not be distinguished from those obtained using (4a) in Fig. 2; see Fig. 4. For $\bar{p} p+p p$, the result of the fits with the two types of formulas, (4a) and (18) are depicted in Fig. 4, where the error bars corresponding to (18) are also shown.

5. Summary, and a short discussion

The Regge parameters that ACGL ${ }^{[1]}$ and, following them, the authors in refs. 2, 3, 4, 17 assume not only are unorthodox but, as we have shown, incompatible with experiment. As our Fig. 3 clearly demonstrates, the claimed large errors in ACGL are not large enough to cover the experimental data.

ACGL get these quaint Regge parameters by considering sum rules like (8) that link the Regge contributions, which they assume to hold only for $s^{1 / 2} \geq 2 \mathrm{GeV}$, with the corresponding low energy $\left(s^{1 / 2}<\right.$ 2 GeV) pieces. Unfortunately, the intermediate intermediate energy ($1.4 \mathrm{GeV} \leq s^{1 / 2}<2 \mathrm{GeV}$) that ACGL, again here followed by the authors in refs. $2,3,4$, take for the $\mathrm{S} 0, \mathrm{P}, \mathrm{D} 0$ and F phases come basically from the experimental analysis of the Cern-Munich group, whose $\pi^{+} \pi^{-}$cross section is more and more incompatible, as $s^{1 / 2}$ nears 2 GeV -in fact, as soon as inelasticity becomes important- with the values found by all other experiments: ${ }^{[7]}$ see our Fig. 3. [The interested reader may consult ref. 9 for the detailed discussion of this and other related issues]. It is thus not surprising that Pennington ${ }^{[5]}$ and Ananthanarayan et al., ${ }^{[1]}$ who fix their Regge parameters by balancing them above 2 GeV with phase shifts below 2 GeV , get totally incorrect Regge amplitudes. And, given these facts, it also follows that the low energy results of references $2,3,4$, which borrow their input at energies $s^{1 / 2} \geq 1.4 \mathrm{GeV}$ from ACGL, should be taken with great caution.

Unlike the results of phase shift analyses, the Regge formulas in Eqs. (4), (16) with the parameters as the "Best values" in (11) or (18), and which we summarize in Table II, give a consistent representation for the imaginary part of all the $\pi \pi$ scattering amplitudes, a representation which can be trusted, within the given errors, for $s^{1 / 2}>1.4 \mathrm{GeV}$, provided $|t|^{1 / 2}<0.4 \mathrm{GeV}$. In fact, one has better than that: our Regge formulas give a good representation of those processes in pion-pion scattering where resonances are absent, or are not important, down to lower energies, just as it happens in $N N$ or πN scattering. This occurs, in particular, for $\pi^{0} \pi^{+}$and $\pi^{-} \pi^{-}$, for which the Regge formulas reproduce the experimental data down to $s^{1 / 2} \sim 1.1 \mathrm{GeV}$. However, by the very nature of things, we are likely to have uncertainties of the order of 15% in the region $1.4 \mathrm{GeV} \leq s^{1 / 2} \leq 1.8 \mathrm{GeV}$ when exchange of isospin 1 is important, because the Regge formula probably represents data only in the average there, as occurs for πN scattering. Finally, and using Eqs. 6, 13 and the formulas in the last column in Table II, we can fit $N N, \pi N$ and $K N$ up to multi TeV energies, and predict $\pi \pi$ and πK cross sections there.

When performing calculations of $\pi \pi$ scattering in which the lower energy region is dominant (such as Roy equations, dispersion relations or sum rules) it is irrelevant, within our errors, which form one uses for the Pomeron, (4a), (17) or (18). The last has better overall fit, and (probably) a more realistic value for $\beta_{P^{\prime}}$; although the first is to be preferred in that it is simpler and fits slightly better the low energy data. The safest procedure is to use both fits, and consider their difference as a measure of the influence of the parametrization in the results. We should, however, emphasize that the parameters in the fits are strongly correlated and, even when they are similar, one cannot mix parameters from the various columns in Table II; each fit stands on its own.

One may also wonder what happens for values of the momentum transfer larger than $|t|^{1 / 2} \sim$ 0.4 GeV . On general grounds, one expects Regge theory to work when $s \gg \Lambda^{2}, s \gg|t|$ and in fact, as already mentioned, Regge representations for $N N$ or πN become unreliable at large $|t|$. For example, the parametrizations of Rarita et al. ${ }^{[13]}$ and ref. 6 for $f^{(\rho)}(t)$ differ completely from one another already at $-t=0.23 \mathrm{GeV}^{2}$, where the first changes sign. There is unfortunately no sure way out of this problem (which is further discussed in the second paper in ref. 23), and one has to admit that, for $s^{1 / 2}>1.4 \mathrm{GeV}$ and values of the momentum transfer $|t|>0.15 \mathrm{GeV}^{2}$, there is no reliable information on the pion-pion scattering amplitude - which, in particular, is an unavoidable cause of uncertainty for Roy equation analyses that require information for values of $|t|$ as large as $0.5 \mathrm{GeV}^{2}$.
-J. R. PELÁEZ AND F. J. YNDURÁIN-

	$1 \mathrm{GeV} \lesssim E_{\text {kin }} \lesssim 15 \mathrm{GeV}$	$1 \mathrm{GeV} \lesssim E_{\text {kin }} \lesssim 30 \mathrm{TeV}$ all parameters free	$1 \mathrm{GeV} \lesssim E_{\text {kin }} \lesssim 30 \mathrm{TeV}$ $s_{1}=0.01, f_{N / \pi}^{(P)}=f_{N / \pi}^{\left(P^{\prime}\right)}$.
$f_{N / \pi}^{(P)}$	1.408 ± 0.005	1.350 ± 0.008	1.380 ± 0.004
$f_{N / \pi}^{\left(P^{\prime}\right)}$	$\equiv f_{N / \pi}^{(P)}[\mathrm{fix}]$	1.67 ± 0.07	$\equiv f_{N / \pi}^{(P)}[\mathrm{fix}]$
$f_{K / \pi}$	0.67 ± 0.01	0.74 ± 0.01	0.717 ± 0.005
r	0 [fix]	0.11 ± 0.08	0 ± 0.013
$\alpha_{\rho}(0)$	0.52 ± 0.02 [fix]	0.52 ± 0.02 [fix]	0.52 ± 0.02 [fix]
$\alpha_{P^{\prime}}(0)$	0.52 ± 0.02 [fix]	0.61 ± 0.04	0.55 ± 0.03
$\widetilde{\beta}_{P}$	-	2.33 ± 0.09	2.31 ± 0.05
β_{P}	2.56 ± 0.03	-	-
$\beta_{P^{\prime}}$	1.05 ± 0.05	1.05 ± 0.10	1.39 ± 0.14
$\beta_{\rho}^{(N \pi)}$	0.366 ± 0.010	0.385 ± 0.009	0.377 ± 0.009
β_{ρ}	0.94 ± 0.14	0.94 ± 0.14 [fix]	0.94 ± 0.14 [fix]
A	-	0.022 ± 0.002	0.033 ± 0.001
s_{1}	-	$(1.2 \pm 0.7) \times 10^{-4} \mathrm{GeV}^{2}$	$\equiv 0.01 \mathrm{GeV}^{2}$
s_{2}	-	$\left(0.33_{-0.3}^{+0.6}\right) \times 10^{-7} \mathrm{GeV}^{2}$	$0.13 \pm 0.05 \mathrm{GeV}^{2}$
$\chi^{2} /$ d.o.f.	-	0.98	1.07

Table II

Acknowledgments

We are grateful to CICYT, Spain, and to INTAS, for partial financial support. J.R. Peláez thanks partial support from the Spanish CICYT projects, BFM2000-1326 and BFM2002-01003 and the E.U. EURIDICE network contract no. HPRN-CT-2002-00311.

References

1 Ananthanarayan, B., et al., Phys. Rep., 353, 207, (2001).
2 Colangelo, G., Gasser, J., and Leutwyler, H., Nucl. Phys. B603, 125, (2001).
3 Descotes, S., Fuchs, N. H., Girlanda, L., and Stern, J., Eur. Phys. J. C, 24, 469, (2002); Kamiński, R., Leśniak, L., and Loiseau, B. Phys. Letters B551, 241 (2003).
4 Buttiker, P., Descotes-Genan, S., and Moussallam, B., LPT-Orsay-03-76 (hep-ph/0310283).
5 Pennington, M. R., Ann. Phys. (N.Y.), 92, 164, (1990).
6 Froggatt, C. D., and Petersen, J. L., Nucl. Phys. B129, 89 (1977).
7 Biswas, N. N., et al., Phys. Rev. Letters, 18, 273 (1967) [$\pi^{-} \pi^{-}, \pi^{+} \pi^{-}$and $\left.\pi^{0} \pi^{-}\right]$; Cohen, D. et al., Phys. Rev. D7, 661 (1973) [$\left.\pi^{-} \pi^{-}\right]$; Robertson, W. J., Walker, W. D., and Davis, J. L., Phys. Rev. D7, 2554 (1973) $\left[\pi^{+} \pi^{-}\right]$; Hoogland, W., et al. Nucl. Phys., B126, 109 (1977) [$\left.\pi^{-} \pi^{-}\right]$; Hanlon, J., et al, Phys. Rev. Letters, 37, 967 (1976) [$\left.\pi^{+} \pi^{-}\right]$; Abramowicz, H., et al. Nucl. Phys., B166, 62 (1980)
$\left[\pi^{+} \pi^{-}\right]$. These references cover the region between 1.35 and 16 GeV , and agree within errors in the regions where they overlap (with the exception of $\pi^{-} \pi^{-}$below 2.3 GeV , see text).
8 Hyams, B., et al., Nucl. Phys. B64, 134, (1973); Grayer, G., et al., Nucl. Phys. B75, 189, (1974). See also the analysis of the same experimental data in Estabrooks, P., and Martin, A. D., Nucl. Physics, B79, 301, (1974) and Au, K. L., Morgan, D., and Pennington, M. R. Phys. Rev. D35, 1633 (1987).
9 Ynduráin, F. J., FTUAM 03-14 (hep-ph/0310206).
10 Ynduráin, F. J., Phys. Letters B578, 99 (2004).
11 Peláez, J. R., and Ynduráin, F. J., Phys. Rev. D68, 074005 (2003).
12 Gell-Mann, M. Phys. Rev. Letters, 8, 263, (1962); Gribov, V. N., and Pomeranchuk, I. Ya. Phys. Rev. Letters, 8, 343, (1962). For more references in general Regge theory, see Barger, V. D., and Cline, D. B., Phenomenological Theories of High Energy Scattering, Benjamin, New York, (1969). For references to the QCD analysis, cf. Gribov, V. N., and Lipatov, L. N. Sov. J. Nucl. Phys. 15, 438 and 675 (1972); Kuraev, E. A., Lipatov, L. N., and Fadin, V. S. Sov. Phys. JETP 44, 443 (1976); Dokshitzer, Yu. L. Sov. Phys. JETP 46, 641 (1977); Balitskii, Ya. Ya., and Lipatov, L. N. Sov. J. Nucl. Phys. 28, 822 (1978); Altarelli, G., and Parisi, G. Nucl. Phys. B126, 298 (1977). For phenomenological Regge analysis of deep inelastic scattering, see Martin, F. Phys. Rev. D19, 1382 (1979); López, C., and Ynduráin, F. J., Nucl. Phys. B171, 231 (1980); Adel, K., Barreiro, F., and Ynduráin, F. J., Nucl. Phys. B495, 221 (1997). For the QCD theory of Regge trajectories, see Dubin, A. Yu., Kaidalov, A. B., and Simonov, Yu. A., Phys. Letters, B323, 41 (1994); Simonov, Yu. A., Nucl. Phys., B324, 67 (1989), from which earlier references may be traced.
13 Rarita, W., et al., Phys. Rev. 165, 1615, (1968).
14 Brodsky, S. J., and Farrar, G., Phys. Rev. Lett., 31, 1153 (1973).
15 Barger, V., and Olsson, M. Phys. Rev., 151, 1123 (1966).
16 Particle Data Tables: Hagiwara, K., et al., Phys. Rev. D66, 010001 (2002).
17 Levin, H. J., and Frankfurter, L. L. (1965). JETP Letters 2, 65. For a comprehensive review, see Kokkedee, J. J. J. (1969), The Quark Model, Benjamin, New York.
18 Veneziano, G. Nuovo Cimento 57, 190 (1968); Lovelace, C. Phys. Letters B28, 264 (1968).
19 Barger, V., et al. Nucl. Phys. B5, 411 (1968).
20 Cudell, J. R., et al., Phys. Rev. D61, 034019 (2000).
21 Desgrolard, P., et al., Eur. Phys. J. C18, 555 (2001).
22 Cudell, J. R., et al., Phys. Rev. D65, 074024 (2002).
23 Ynduráin, F. J., Phys. Letters B41, 591 (1972) and FTUAM 04-??, in preparation.
24 Mandelstam, S. Nuovo Cimento, 30, 1127, 1148 (1963).
25 Baltrusaitis, R. M., et al. Phys. Rev. Lett. 52, 1380 (1984); Honda, M., et al. Phys. Rev. Lett. 70, 525 (1993).

[^0]: ${ }^{1}$ In ref. 4, the Regge parameters of ACGL are also used for πK scattering; perhaps this is the reason why they are not able to get a satisfactory description of this process.
 ${ }^{2}$ It should be noted that Pennington has publicly stated (in the Conversano workshop, July 2003) that his analysis, tenable in 1974, is superseded by more recent developments, both experimental and theoretical. In fact, already by 1977 it was clear to experts that standard Regge behaviour also holds for $\pi \pi$ scattering; see, e.g., Froggatt and Petersen, ref. 6, who use the correct Regge behaviour in their dispersive analysis of $\pi \pi$ scattering.

[^1]: ${ }^{3}$ In potential theory factorization can be proved rigorously; in relativistic theory, it follows from extended unitarity or, in QCD, from the DGLAP formalism. ${ }^{[12]}$

[^2]: ${ }^{4}$ Since the P^{\prime} pole couples so weakly to kaons, one may wonder on the importance of other Regge poles for the subleading contribution to kaon scattering. For $K K$ scattering, the Regge pole associated with the $f_{2}(1525)$ resonance gives a substantial contribution; but, for $K N$ or πK scattering, this trajectory contributes very little since it is almost uncoupled to pions and nucleons and its intercept is small, $\alpha_{f_{2}(1525)} \simeq-0.3$. For $K N$ and πK, the amplitude for exchange of zero isospin is almost pure Pomeron.

[^3]: ${ }^{5}$ Above 30 GeV we approximate $\sigma_{\bar{p} p}-\sigma_{p p}=(66.7 \mathrm{mb})(s / \hat{s})^{-0.55}$, where this difference comes from the phenomenological fit of ref. 16, since we do not have data at coinciding energies. For $\pi \pi$ only data above 2 GeV are included in these fits.
 ${ }^{6}$ If we had fitted also β_{ρ}, including the sum rule (8), its value would depend on whether we had included all $\pi \pi$ data above 1.4 GeV (in which case we would have got 1.05 ± 0.009) or only data for $s^{1 / 2} \geq 2 \mathrm{GeV}$, which gives 0.80 ± 0.11 : essentially the same numbers as in the fits in Sect. 2, Eq. (10a,b).

